Local Extraction of Bifurcation Lines

نویسندگان

  • Gustavo Mello Machado
  • Filip Sadlo
  • Thomas Ertl
چکیده

We present local extraction of bifurcation lines together with extraction of their manifolds, a topological feature that has not yet been sufficiently recognized in scientific visualization. The bifurcation lines are extracted by a modification of the vortex core line extraction techniques due to Sujudi-Haimes, and Roth-Peikert, both formulated using the parallel vectors operator. While the former provides acceptable results only in configurations with high hyperbolicity and low curvature of the bifurcation lines, the latter operates only well in configurations with low hyperbolicity but is able to perform well with strong curvature of the bifurcation lines, however, with the drawback that it often fails to provide a solution. We present refinement of the solutions of the parallel vectors operator as a means to improve both criteria and, in particular, to refine the solutions of the Sujudi-Haimes criterion in cases where the Roth-Peikert criterion fails. We exemplify our technique on synthetic data, data from computational fluid dynamics, and on magnetohydrodynamics data. As a particularly interesting application, we demonstrate that our technique is able to extract saddle-type periodic orbits locally, and in case of high hyperbolicity at higher accuracy than traditional techniques based on integral curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Center manifold analysis and Hopf bifurcation of within-host virus model

A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...

متن کامل

Bifurcation in a variational problem on a surface with a constraint

We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.

متن کامل

Space-Time Bifurcation Lines for Extraction of 2D Lagrangian Coherent Structures

We present a novel and efficient technique to extract Lagrangian coherent structures in two-dimensional time-dependent vector fields. We show that this can be achieved by employing bifurcation line extraction in the space-time representation of the vector field, and generating space-time bifurcation manifolds therefrom. To show the utility and applicability of our approach, we provide an evalua...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013